返回第一百零五章 魔方矩阵(2 / 2)万能数据首页

全班同学翻翻白眼。

程诺耸耸肩,神色如常的继续讲道。“在讲这道题之前,我先要给大家讲一个模型,叫做魔方矩阵!”

为什么程诺能知道魔方矩阵这个东西?

按理说,高中方面,不会涉及这方面的知识。

但程诺是谁?他可是学霸!

学霸的一大特征就是,永远不会满足只学习课内那点知识!

还记得程诺从书店买回的那一大堆关于世界数学难题的书吗?其中一个难题的推理过程中,就用到了这个魔方矩阵。程诺就顺便将它记下来了。

程诺站在讲台上,将魔方矩阵的三种解法都讲了一遍。

“听了这个定理之后,大家是不是觉得这道题简单了许多。首先,第一行中间那个数字肯定是1,数字2的位置……”

讲台下同学们听得头晕目眩,不明觉厉,程诺倒是在讲台上讲的津津有味。

“好了,我想说的就是这些,谢谢大家!”说完,程诺走下讲台。

啪啪啪~~

全班同学下意识的鼓掌。

老唐同志待程诺走下讲台后,站在讲桌前一脸尴尬。

妹的!把我想要讲的都讲完了,让我讲啥?!

本来,老唐同志就想利用这个题目引出魔方矩阵,在高考前发散一下学生的思维。

可现在……

呃……好吧,程诺把魔方矩阵讲的比我还详细,那我这个当老师的还是不献丑了吧。

“好了。同学们,我们拿出上周发的那套衡水真题,我们讲一下那套试卷。”老唐尴尬的咳嗽了一下,也不问同学们有没有听懂了,急忙转移话题道。

“哇,穆冷,程诺果然厉害呢。这样的题都会!”苏小小的明亮的眼里充满了小星星。

穆冷的嘴角微微上扬,“这才是那个……桀骜的他啊!”

…………

“好了,下课。穆冷,程诺,你们两个跟我来一趟办公室。”

伴随着下课铃声,老唐刚好把最后一道题讲完。

程诺和穆冷对视一眼,皆是一头雾水,不知道老唐找自己有什么事,不过还是老老实实的跟着老唐走到办公室。

下楼梯的时候,程诺凑到穆冷身边,语气中略带担忧的小声说道,“冷姐,你说是不是我们两个谈恋爱的事被老唐发现了?”

穆冷淡淡的瞥了程诺一眼,一字一顿的开口:“你-说-呢!”

程诺缩了缩脖子,一脸讪讪,“开玩笑,开玩笑。”

“不过,冷姐,我们两个的事你真的不再考虑考虑吗?你看,你是学霸,我也是学霸,学霸配学霸,我们两个可谓是门当户对。生出来的孩子也一定是学霸!”程诺握紧双拳说道。

穆冷抿了抿嘴唇,模棱两可的说道,“高考后,我们在谈论这个问题吧。”

“好,我等你。”程诺淡淡一笑。

………………

注①:魔方矩阵另外两种情况的算法。(正文字数已达2000字,这不是水字数,这是为了帮助大家学会这道题!!请大家理解作者的良苦用心。)

(2)当N为4的倍数时

采用对称元素交换法。

首先把数1到n×n按从上至下,从左到右顺序填入矩阵

然后将方阵的所有4×4子方阵中的两对角线上的数关于大方阵中心作中心对称交换(注意是各各子矩阵对角线上面的数),即a(i,j)与a(n+1-i,n+1-j)交换,所有其它位置上的数不变。(或者将对角线不变,其它位置对称交换也可)

(3)当N 为其它偶数时

当n为非4倍数的偶数(即4n+2形)时:首先把大方阵分解为4个奇数(2m+1阶)子方阵。

按上述奇数阶魔方给分解的4个子方阵对应赋值

上左子阵最小(i),下右子阵次小(i+v),下左子阵最大(i+3v),上右子阵次大(i+2v)

即4个子方阵对应元素相差v,其中v=n*n/4

四个子矩阵由小到大排列方式为①③④②

然后作相应的元素交换:a(i,j)与a(i+u,j)在同一列做对应交换(j<t-1或j>n-t+1),

注意其中j可以去零。

a(t-1,0)与a(t+u-1,0);a(t-1,t-1)与a(t+u-1,t-1)两对元素交换

其中u=n/2,t=(n+2)/4 上述交换使每行每列与两对角线上元素之和相等。

…………

PS:解题步骤我已经详细到这种程度了。如果你们再不会……我也没办法了。